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Abstract--Since its advent the Digital Terrain Model (DTM) has been employed widely in the sciences

for the solution of problems requiring a digital model of landforms.  In this paper we describe a new use

of the DTM in the calculation of  highly accurate visual sunrise and sunset times that are required by the

observant population in Israel.  We have employed ray tracing to determine the effect of atmospheric

refraction through a simplified layered atmosphere.  A general analytic expression for the atmospheric

refraction was determined from these calculations as a function of the observer’s height for two model

atmospheres known as the subtropical  summer and winter atmospheres .  These expressions determine

the general magnitude of the refraction as a function of apparent view angle of the observer.  We also

determined a  simplified analytic  expression for  the effect  of  atmospheric  refraction on the  vertical

angular  profile  of  the  mountainous horizon  as  calculated  from the  DTM  (atmospheric  refraction

magnifies the mountainous features of the horizon).  These expression are then used  in calculating the

apparent vertical angular position of the sun as a function of time.  The time when the upper limb of the

sun first (last) appears to rise (set) over the horizon adjusted for the effect of refraction determines the

time of the visible sunrise (sunset).   Comparison with observations have shown that the visible sunrise

and sunset times can be typically determined to better than 15 seconds using the 25 meter DTM of Israel

and eastern Jordan.

 

Key  Words:  DTM.  DEM.  Refraction.  Sunrise.  Calendar.



1) Introduction

    The visible sunrise and sunset times are defined as those times at  which the sun rises and sets,

respectively, over the mountainous horizon.  This changes daily as the sun rises and sets over different

terrain as it progresses in its apparent daily motion.   The calculation of the visible sunrise and sunset

times is therefore  impossible without an accurate topographical  model of  the eastern and western

horizons, respectively.  In the past this difficulty could be overcome only through daily observations or

by optical measurements with a theodolite.  Since both of these methods are laborious they can only be

applied in special situations.  On the other hand, the digital terrain model (DTM) provides a flexible and

rapid means for obtaining an analytical description of the visible horizon. This in turn can be used for

computing the sun’s visible sunrise and sunset times. 

   Neglecting atmospheric refraction, if h1 and h2 are the heights of the observer and of  the obstructions

at a distance,  21 rr 
 , from the observer (see Figure 2), then the obstruction will appear to make an

angle, o , with the horizontal at an azimuth angle ,  where
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where  ii  , ,  are the latitude and longitude respectively (i = 1 for the observer, and  i = 2 for the

obstruction in the distance).  The physical shape of  the eastern and western horizons are determined by

finding the maximum viewing angle, o , for any particular azimuth, among all the relevant elevation

points, ( ir , hi ), contained in the DTM of  Israel  and eastern Jordan (Hall, 1996; 1997b). This DTM,

depicted in Figure 1, consists of elevations on a 25 meter grid, derived from the 1:50,000 scale mapping

using methods described in Hall et. al. (1990). 

2) Discussion
   

   The visible horizon is not determined solely by physical landforms.  Rather, atmospheric refraction is

an important contributor to the shape of the observable horizon if the distances  to the landforms that

determine the horizon are significantly greater than 15 km (as shown by our calculations).  If '
o  is the

viewing angle of the mountainous horizon after atmospheric refraction then

                                                                corroo  ' ,                                     (6)

 where  o  is given by Eq. 1, and corr  is a positive correction factor. corr  depicts the magnifying effect

of atmospheric refraction on physical landforms on the horizon. More generally, the apparent viewing

angle of the sun’s center, '
o , is related to the total atmospheric refraction, tot , as follows,

                                                                  totro  '  ,                                     (7)

where r  is the angle elevation of  the sun’s center with respect to the horizon without atmospheric

refraction.  tot  can be calculated to a sufficient approximation by using highly idealized layered model

atmospheres such as employed by Menat (1980).  (Unless mentioned otherwise, the optical-atmospheric
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physics in this work  is based on the work  of Menat (1980)  and the literature  cited  therein).   The

temperature and pressure dependencies of the layered atmospheres are given by 

                                                     iT = oiT , + ta h;   iH 1 iHh                             (8)

                                                                 iP = oiP , iT( oiT ,/ tc)                                    (9)
 

The values of  iH ,  oiT , ,  ta , and tc  are given in Table I for the two model atmospheres used in this

work.  They are known as the subtropical summer and winter atmospheres (Selby, 1976, Valley, 1965)

in  accordance  with  their  characteristic  temperature  and  pressure  dependencies  with  altitude.  The

atmospheric refraction, tot , can be calculated for any desired set of  light trajectories corresponding to

observation angles, '
o , heights h1, h2,  and distances D = 21 rr 

  (see Figure 2).  This is done by solving

Snell’s law for arbitrarily small steps along the path of  the light  trajectory that corresponds to the above

boundary conditions, i.e., 

                           iiearthiiiearthi hRnhRn  sin)(sin)( 111                             (10)

where i   is the angle the light trajectory makes to the normal of  the atmospheric layer i.  Neglecting

the effect of humidity, the index of refraction, in , at any altitude, h , is given by 

                                nnii bann   (1011 6 / 2 P) )(/)( hTh                          (11)
                                                              46.77na ;  459.0nb ;  = 0.6 m

where the height dependencies of  the pressure, P , and  temperature, T , are given in equations 8, 9 and

in Table  I.    In  practice  we calculated  the true  viewing angle at  the observer,  '
o ,  and the total

atmospheric refraction, tot , separately.  We performed these apparently redundant calculations in order

to determine an analytic expression for the correction factor corr  (Eq. 6) to the view angle, o  (Eq. 1),

as described below. 
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   The total atmospheric refraction, tot , was calculated by ray tracing for a range of observer heights, h1,

and view angles, '
o .  In calculating tot , we traced the path of the light in the model atmospheres by

solving equations 10-11 in 2 meter steps from the observer to the outer limit of the model atmospheres.

[For negative view angles, '
o , the path of the light ray was calculated in steps of minus 2 meters until

the light ray leveled off locally (degrees) due to the curvature of the earth.  After this point the

path of the light was calculated in +2 meters steps until the light reached the outer limit of the model

atmosphere. tot  is the sum total of the refraction from these two regions.]   The results for tot  could be

adequately fitted to a second order polynomial in  '
o (degrees)  that is also a function of the observer

height, h1, viz.,
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The values of the polynomial coefficients for the observer heights, h1 (with respect to sea level), relevant

to this work are given in Tables II-III.  Figure 5 plots the values of tot  for 750  h1  850 (meters) for

the winter atmosphere.

     In order to calculate corr  (see Eq.. (6) ) the path of the light rays was traced backward from the

observer to the obstruction.  A search routine was written to determine at which angle '
o  the ray just

glanced off the obstruction at distance D at height h2.  The search began at angles '
o o , and stepped

in angle until the ray just glanced the obstruction at distance D at height h2.  The angle, '
o , which meets

this condition is the solution to Eq.  6  for the chosen value of h1,  h2,  and D.  The results of these

calculations were fitted to a simplified analytic expression given in Eq. 13. Due to the small difference in

corr  between the summer and winter atmospheres, it was sufficient to use the average corr , corr , for

either atmosphere.
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where D is in km, and h1, h2 are in meters,  corr  is in degrees, and

                     000034.0)(0141.0,1011.3)(000782.0 211
7

211 hhbhhm  

                     0000269.0)(0192.0,1009.3)(000764.0 212
7

212 hhbhhm   .

The small discontinuity in corr  near 21 hh   in Eq. 13 and in Figure 3 is caused by using a simplified

analytic expression for the refraction  that models the behavior of corr  as two intersecting straight lines.

The simplified expression gives values of  corr  that  differ no more than by 0.02o from the actually

calculated values.  This produces a  negligible  error  of   6  seconds in sunset (sunrise) times for  our

latitude.  The results are plotted in Figures 3-4 for some typical values of D, h1, and h2..   Note that in

Figure 3 the refraction correction,  corr ,  is asymmetric after  the crossing point at  12 hh  .   This is

probably due to light bending more in order to glance off the obstruction as h1 becomes larger than h2

(see Figure 2).   As seen in Figure 4, the further the obstruction, the larger the refraction correction,

corr , becomes.  This is due to the light trajectory bending more for larger distances, D, while for very

short distances ( D   15 km ) the trajectory is constrained to be a straight line  and corr  = 0, as can be

seen in Figure 2.

3) Calculation of Visible Sunrise and Sunset Times
                             

The visible sunrise and sunset times were calculated by determining at which time the upper limb of the

sun passed over the mountainous horizon.   A search program was written for this purpose.  This program

begins looking for the sunrise or sunset time over the mountains at the time of the sunrise or sunset for an

observer at height h1 without mountains in the distance (known as the  astronomical sunrise or sunset

times).   The program then advances, or goes backward, in 2.5 second steps in time until the visible
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sunrise or sunset times are reached, respectively.  If '
o sun, is the apparent angular altitude of the upper

limb of the sun and  aalt is the angular altitude of the center of  the sun without refraction (whose value is

determined by the equation of time, see, e.g., Astronomical Almanac, USGPO, 1996), then 

                                                        '
o sun  = aalt + sun + tot                                           (14)

where  sun is  the angular  half width of the sun (0.2666  degrees) and  tot  is the  total  atmospheric

refraction as given in Eq. 12.  Since tot  itself depends on '
o sun, Eq. 14 must be solved by an iterative

process.   For an initial guess for  tot ,   we use the total astronomical refraction at the astronomical

sunrise or sunset as calculated from ray tracing.  We then introduce the result of Eq. 14 into Eq. 12 and

reiterate Eq. 14 with the new value of tot  until we obtain a constant value of '
o sun to the accuracy of

the calculations.  We have found that Eq. 14 converges rapidly after only 1 to 4 iterations.  This process

is repeated for each step in time until the apparent altitude of the upper limb of the sun, '
o sun,  at the

current solar azimuth is equal to  '
o  (Eq. 6) at that same azimuth.  At this point the visible sunrise or

sunset time for that day has been reached.

4) Results

    Figure 6 shows the result of our calculation (black squares) of the visible sunrise times for the Armon

Hanatziv neighborhood of Jerusalem (35o 14’ 18.5”  longitude east, 31o 44’ 59.8”  latitude north), h1 =

754.9 m.  The sunrise horizon is defined by the Moav mountains of Jordan 40-70 km to the east whose

peak  altitudes,  h2,  range from 700 to  1200  meters. Ten years of near-daily  observations by Rabbi

Avraham Druk are superimposed over our calculated times in Figure 5.   We have used the  summer

atmosphere for days 85 to 290 and the winter atmosphere for the rest of the 365 days of the year.  The

10 years of observations have been suitably shifted in order  to  neutralize the effect of  time shifts

between different years (in most part caused by the 4 year cycle).  The results show that the sunrise time

can be calculated to an accuracy of about 15 seconds for more than 90 percent of sunrise times observed.
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Comparison of observations to our calculations for other places in Israel have been consistent to the same

accuracy.  It is our belief that adding a term for humidity in the index of refraction (Eq. 11) can improve

the accuracy of  our  calculations for  the  winter  months.  Figure 7  gives an example of the sunrise

calendars that we provide through a country-wide publication (The Bikurei Yosef  Tables of the Visible

Sunrise and Sunset Times). 

   For a distant horizon, as that of Figure 6, elevation inaccuracies in the DTM  ( 10  meters maximum,

but  typically no worse than 5  meters)  produce a quite negligible effect on the calculated sunrise

times.  However, these inaccuracies will make the major contribution to the uncertainty in the sunrise

and sunrise times for distances less than 5 km.  We therefore cannot provide tables for those cities that

have mountainous obstructions within 5 km.

    The observations shown in Figure 6 are in contradiction to the conclusions of Schaefer and Liller

(1990)  who claimed that it  is impossible to determine the sunrise times to better  than 4 min. They

obtained this conclusion by averaging observations from varying heights.  However this neglects the

dependence of the rms deviation of the sunrise times on the length of the light’s air path.  For example,

the length of the light’s air path to the horizon, L, for an observer of height, h1, is (Menat, 1980,  his Eq.

41),

                                                               L 1h .                                             (15)

It can be shown that a proper analysis of their data, taking account of Eq. 15, is consistent with the

observations of sunrise times for Israel.
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Figure Captions

Figure 1   Shaded relief image of the study area based upon the 25 meter DTM of Israel and eastern

Jordan (Hall 1977).  Jerusalem is located in the relatively flat area in the mountains north west of the

Dead Sea. For the high places of Jerusalem, sunrise appears over the Moav Mountains in eastern Jordan,

east of the Dead Sea.  (See original article for figure)

Figure 2    Depicts the path of light, in the model atmospheres, glancing off the obstruction at height, h2,

and  finally reaching the observer at height h1. In the figure, the obstruction appears to make a negative

angle,  '
o ,  with the observer’s local  horizontal.  Without refraction, the obstruction would make an

angle, o < '
o .  Other variables are defined in the text.  The dimensions are not to scale.

Figure 3   Plot of the refraction correction, corr , to the view angle, '
o ,  as a function of the height of

the observer, h1 for an obstruction height h2 = 500 m, and a distance to the obstruction, D = 50 km.  (See

text for details.)

Figure 4  Plot of the refraction correction, corr , to the view angle, '
o ,  as a function of the distance,

D, to the obstruction, for an observer height h1=500 m, and an obstruction height, h2 = 500 m.  (See text

for details.)

Figure 5   Plot of the total atmospheric refraction, tot , as a function of view angle, '
o , for the winter

atmosphere for 750 m   h1   850 m.
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Figure 6  Calculated sunrise times (black line) superimposed over 10 years of near daily observations of

the sunrise by Rabbi Avraham Druk from the Jerusalem neighborhood, Armon Hanatziv.  (See text for

details.)

Figure 7  Example of the  Bikurei  Yosef Tables of  the  Visible  Sunrise and Sunset for  the city of

Jerusalem.  The tables are calculated for the city of Jerusalem according to the Hebrew Calendar of the

year 5760 which spans the calendar years 1999-2000.  The year 5760 is a leap year having 13 months of

length  29 or 30 days. The tables are read from top to bottom, right to left.  The first time entry (the

Jewish Near Year) corresponds to September 11, 1999. As explained in the text, we are over 90%

confident  that  the  calculated  times  are  accurate  to  better  than  15  seconds.   Jewish  religious

considerations therefore require us to add 15 seconds to each sunrise time, and subtract 15 seconds from

each sunset time.  The sunrise and sunset times are then rounded to the nearest upper or lower 5 seconds,

respectively. (See original article for figure.)
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Table Captions

Table 1  Value of coefficients in Eq. 12

Table 2  Values of coefficients in Eq. 12 for the winter atmosphere 

Table 3  Values of coefficients in Eq. 12 for the summer atmosphere
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Atmosphere i )(kmH i oiT , )(Kelvin )(, mbarP oi ta tc

1 -0.4 299.0 1013.0 -6.4231 5.2928
2 13.0 215.5 179.0 0.2000 -170.7413

summer 3 18.0 216.5 81.2 1.0714 -31.5803
4 25.0 224.0 27.7 2.2273 -15.5025
5 47.0 273.0 1.29 1.0000 -27.8966
6 50.0 276.0 0.951 -2.9000 11.2453
7 70.0 218.0 0.067 0.0000 0.0000
1 0.0 284.0 1018 -6.4000 5.3938
2 10.0 220.0 256.8 -0.5556 61.2602

winter 3 19.0 215.0 62.8 0.1667 -204.6123
4 25.0 216.0 24.3 0.2000 -169.6342
5 30.0 217.0 11.1 2.4500 -13.7018
6 50.0 266.0 0.682 -1.7500 19.0056
7 70.0 231.0 0.047 0.0000 0.0000
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h1 a(h1) b(h1) c(h1) d(h1) e(h1) f(h1)
h1 1150 meters 0.16878 5104893.1  0.0148 0.0001 0.47806 0.07447
1050  h1 < 1150 0.16901 5105118.1  0.01575 0.00007 0.4834 0.07641
950  h1 < 1050 0.16896 5105058.1  0.02169 -0.00014 0.52128 0.09025
850  h1 < 950 0.16838 510445.1  0.02111 -0.00012 0.5161 0.08825
750  h1 < 850 0.16876 5104876.1  0.0232 -0.00019 0.52786 0.09266
650  h1 < 750 0.16907 5105295.1  0.02383 -0.00021 0.5303 0.09358
550  h1 < 650 0.1691 5105256.1  0.02976 -0.00042 0.56622 0.10671
450  h1 < 550 0.1696 5106268.1  0.02905 -0.00039 0.56005 0.10422
350  h1 < 450 0.1691 5105319.1  0.01416 0.00011 0.46823 0.06829
250  h1 < 350 0.16916 5105492.1  0.01168 0.0002 0.45241 0.06206
150  h1 < 250 0.16941 5106191.1  -0.01107 0.0083 0.32072 0.0059
50  h1 < 150 0.16924 5105257.1  -0.00922 0.0008 0.33125 0.1087
-50  h1 < 50 0.16872 5105938.1  0.0305 -0.0021 0.55065 0.10908

-150  h1 < -50 0.16872 5106064.1  0.03083 -0.00022 0.55083 0.10908
h1 < -150 0.16870 5106195.1  0.03119 -0.00022 0.55118 0.10915

Table 2
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h1 a(h1) b(h1) c(h1) d(h1) e(h1) f(h1)
h1 1150 meters 0.15274 5102745.1  0.0147 0.00017 0.43732 0.06206
1050  h1 < 1150 0.15225 510232.1  0.01207 0.00011 0.44836 0.06573
950  h1 < 1050 0.15256 5102599.1  0.01589 -0.00003 0.47504 0.07487
850  h1 < 950 0.15279 5102876.1  0.01631 -0.00004 0.47688 0.07551
750  h1 < 850 0.15229 5102262.1  0.02014 -0.00017 0.50277 0.08453
650  h1 < 750 0.15239 5102343.1  0.02058 -0.00018 0.50458 0.0851
550  h1 < 650 0.15286 5103012.1  0.02555 -0.00036 0.53764 0.09663
450  h1 < 550 0.15248 5102399.1  0.02054 -0.00018 0.50165 0.08389
350  h1 < 450 0.15264 5102714.1  0.01256 0.00009 0.44703 0.06355
250  h1 < 350 0.15287 510332.1  0.01515 0.0 0.50458 0.0851
150  h1 < 250 0.15277 5102843.1  -0.0075 0.00067 0.31655 0.01201
50  h1 < 150 0.15281 5102951.1  -0.00838 0.0007 0.3113 0.00986
-50  h1 < 50 0.15237 5103233.1  0.02692 -0.00021 0.52849 0.10086

-150  h1 < -50 0.15236 5103322.1  0.02718 -0.00021 0.52854 0.10083
h1 < -150 0.15234 5103424.1  0.02744 -0.00022 0.52857 0.10079

Table 3
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